All Categories : Technical Papers : 2014 ASPRS Louisville Proceedings Bookmark and Share

Title : Estimating Rainfall for Index-Based Agricultural Insurance
Company : ADNET Systems, Inc.
File Name : Albayrak_Teng.pdf
Size : 501889
Type : application/pdf
Date : 08-May-2014
Downloads : 9

Rate This File
5 Stars
4 Stars
3 Stars
2 Stars
1 Star

Authors: Arif Albayrak, William Teng

Index-based agricultural insurance is a promising alternative for individual farmers who cannot afford traditional insurance based on field inspections for assessing losses. Weather-indexed agricultural insurance, with payouts tied to pre-determined triggers of local indices, requires no field visits, thus significantly reducing costs. To be effective, weather indices need a sufficiently dense network of quality-controlled weather stations. However, in some regions of the world, the number of stations is often limited and located in the main cities and not near farms that are to be insured. Our study focused on estimating rainfall for areas without rain gauges. For the first phase, we assumed there were no available data from the particular farm to be insured. To obtain daily rainfall estimations for that farm, we applied the neural networks method to interpolate/discover rainfall data, using information from neighboring stations. For the second phase, we assumed there were some limited data available from the farm. To test our method, we used 10 years of rainfall data collected from 21 land-based stations in Iowa, U.S. We started with a small number of stations and systematically increased that number and, thus, the information content of the entire system. Overall, this study showed an improvement in rainfall estimation, when information content from station data increased. While promising for application to weather-indexed agricultural insurance in some areas, the method used in this study could not help extend insurance coverage to areas too far away from existing stations. Thus, the next step would be to incorporate satellite data to increase the density of rainfall and other measurements. The upcoming Global Precipitation Measurement (GPM) and Soil Moisture Active Passive (SMAP) missions (2014 launches) will extend the current data records for both measurements into the future, as well as provide improved quality and resolution.
User Reviews More Reviews Review This File

Harris

Featured Video
Jobs
Product Manager for CHA Consulting, Inc. at Boston, Massachusetts
Geospatial Analyst/Programmer for LANDIQ at Sacramento, California
Senior Structural Engineer for Wiss,Janney, Estner Assoicates, Inc at houston, Texas
Mid-Level Mechanical Engineer for Kiewit at lenexa, Kansas
System Designer/Engineer for Bluewater at Southfield, Michigan
Mechanical Engineer for Allen & Shariff Corporation at Pittsburgh, Pennsylvania
Upcoming Events
GEOINT 2018 Symposium at 333 S Franklin St Tampa FL - Apr 22 - 25, 2018
GITA Pacific Northwest Annual Conference at Mukilteo WA - Apr 23 - 24, 2018
FME World Tour 2018 at Frankfurt Germany - Apr 24, 2018
GENEQ
Canon: oce crystalPoint
Teledyne Optech
Teledyne:
GEOINT2018



Internet Business Systems © 2018 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation TechJobsCafe - Technical Jobs and Resumes  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise